Author Archive | Admin

NASA, Air Force Seek Next Generation Space Processor Program

RELEASE : 13-093

WASHINGTON — NASA and the U.S. Air Force Research Laboratory in Albuquerque, N.M., are requesting research and development proposals to define the type of spacecraft computing needed for future missions.

Through a broad agency announcement, the Air Force Next Generation Space Processor Analysis Program is seeking two to four companies to perform a yearlong evaluation of advanced space based applications that would use spaceflight processors for the 2020-2030 time frame.

“Computer processors and applications aboard spacecraft will need to transform dramatically to take advantage of computational leaps in technology and new mission needs,” said Michael Gazarik, associate administrator for NASA’s Space Technology Mission Directorate at the agency’s headquarters in Washington. “NASA’s Space Technology Program is teaming with the Air Force to develop the next generation spaceflight processor requirements and propose solutions to meet future high performance space computing needs in the upcoming decades.”

Processor applications could include autonomous pinpoint landing with hazard detection and avoidance during entry, descent and landing during moon or Mars missions; real-time segmented mirror control for large space-based telescopes; onboard real-time analysis of multi-megapixel-level hyperspectral image data; autonomous onboard situational analysis and real-time mission planning; and real-time mode-based spacecraft-level fault protection.

The broad agency announcement will involve a competitive selection process. The NASA and Air Force Research Laboratory Space Vehicles Directorate team plans to award a cost-reimbursement contract worth about $2 million to be shared by the selected companies during a period of one year.

Studies done in the first three months will determine and define the required computing performance for these advanced applications and compare their findings with the government’s preliminary requirements. Awardees then will have nine months to develop spaceflight processing architecture solutions to a set of NASA and Air Force requirements, based on progress and availability of funds.

Based on the results of the study effort, a chosen team may develop the spaceflight processor during a follow-on effort. A contract award of about $20 million during a period as long as four years could be made based on availability of funds. The intent would be to develop a spaceflight microprocessor capable of providing high-performance space computing capabilities required for advanced space missions through 2030.

To view the broad agency announcement, visit:

http://tinyurl.com/cd7fkjp

For information about the Air Force Research Laboratory’s Space Vehicles Directorate, visit:

http://www.kirtland.af.mil/afrl_vs/

NASA’s Game Changing Development Program at the agency’s Langley Research Center in Hampton, Va., is managing this announcement. The program is part of NASA’s Space Technology Mission Directorate, which is innovating, developing, testing and flying hardware for use in future science and exploration missions. NASA’s technology investments provide cutting-edge solutions for our nation’s future. For information about NASA’s Space Technology Mission Directorate, visit:

http://www.nasa.gov/spacetech

Continue Reading

NASA Taps the Power of Zombie Stars in Two-in-One Instrument

NICER/SEXTANT Payload

This artist’s rendition shows the NICER/SEXTANT payload that NASA recently selected as its next Explorer Mission of Opportunity. The 56-telescope payload will fly on the International Space Station. Credit: NASA

Neutron stars have been called the zombies of the cosmos. They shine even though they’re technically dead, occasionally feeding on neighboring stars if they venture too close. Interestingly, these unusual objects, born when a massive star extinguishes its fuel and collapses under its own gravity, also may help future space travelers navigate to Mars and other distant destinations.
 


Read Full Article

 
Source*: NASA.gov

Continue Reading

New Thrust for Solar Electric Propulsion

NASA's Evolutionary Xenon Thruster (NEXT) has developed a 7-kW ion thruster that can provide the capabilities needed in the future. Credits: NASA

NASA’s Evolutionary Xenon Thruster (NEXT) has developed a 7-kW ion thruster that can provide the capabilities needed in the future. Credits: NASA

Harnessing the power of the Sun to provide thrust for transport in space has long been a part of science fiction imagery. Now a reality after decades of development, it has found increasing use for applications ranging from station-keeping to orbit-raising. Obstacles remain, but evolving technology should enable expanding applications of this weight-saving form of energy, possibly even for manned spaceflight.

Read More (+)

Continue Reading

Smartphone powers Star Wars-inspired NASA robot

Smartphone Spheres

Miniature satellites resembling the flying robot that helped Luke Skywalker with his light saber training are now serving as mission control’s eyes and ears aboard the International Space Station.

It’s hard not to get freakishly excited when science fiction becomes scientific fact — especially when the origins of that science are rooted in Star Wars.

Think back, young Jedis, to the scene where a fresh-off-Tatooine Luke Skywalker is honing his light saber skills under the tutelage of Obi-Wan Kenobi. A round, floating robot called a remote helps Luke practice his Force-finding mojo. Now, NASA is running experiments with miniature satellites, or nanosatellites, that were inspired by that fictional robot.

Roughly the size of a soccer ball, these robots that fly freely in space are called Spheres (which is short for Synchronized Position Hold Engage Reorient Experimental Satellites). Star Wars connection aside, there’s another remarkable detail about Spheres: they’re powered by smartphones, specifically a Google Nexus S.


Read Full Story

*Source: CNET.com

Continue Reading

NASA’s next big thing is very small

Next Big Thing

We often think of NASA in grandiose terms — tackling the biggest problems with the biggest thinking, applying the grandest ideas that mankind can conceive. But now, NASA is thinking small in a big way, applying a DIY ethos to spaceflight, and using commercially available tools and technologies to get the job done.

Instead of gigantic systems costing millions of dollars, and thousands of man hours to produce and launch, the next greatest idea is to focus on the small things — using off-the-shelf products and small-scale design to take an approach to space systems research that is quicker, cheaper, and more efficient. Aboard the International Space Station, the SPHERES (Synchronized Position Hold, Engage, Reorient Experimental Satellites) are already doing just that.


Read Full Story

*Source: CNET.com

Continue Reading

NASA and TopCoder to issue Robonaut 2 ‘sight’ challenge

Robonaut

NASA Tournament Lab is launching two new competitions, this time to give Robonaut 2, the humanoid robot aboard the international space station, the gift of improved “sight.” The challenges are the latest offered by the Tournament Lab in conjunction with the open innovation platform TopCoder.

The first competition calls on participants to figure out how to enable Robonaut 2, or R2, to identify buttons and switches on a console fitted with LED lights. The winning entry would be in the form of an algorithm application that works seamlessly with R2’s cameras in different lighting conditions. The second competition will build off the first, calling on competitors to write an algorithm that controls the robot’s motions based on the new “sight” capability.

Read Full Story

*Source: WashingtonPost.com

Continue Reading

Magnetic shielding of walls from the unmagnetized ion beam in a Hall thruster

A new 15kW high power Hall thruster is being developed to support a Solar Electric Propulsion Technology demonstration mission within the ISP project. One of the key design features for the new thruster will be the use of magnetic shielding for improving thruster life by shaping the magnetic field to reduce discharge channel wall erosion.

Click here for more information: http://apl.aip.org/resource/1/applab/v102/i2/p023509_s1.

Continue Reading

3D Printers to Build NASA’s Spare Parts & Rocket Engines

Charles Bolden, NASA administrator and former astronaut, praises the potential of 3D printing to one day quickly create any parts that space travelers would need, and do it with material from whatever planet, moon, or asteroid they happen to inhabit.

NASA Administrator Charles Bolden (second from right) being briefed on 3D printing and prototyping technology to create parts for the Space Launch System at Marshall Space Flight Center.

NASA Administrator Charles Bolden (second from right) being briefed on 3D printing and prototyping technology to create parts for the Space Launch System at Marshall Space Flight Center.

Read more: 3D Printers to Build NASA’s Spare Parts & Rocket Engines – Popular Mechanics

Continue Reading

NASA Supports American Manufacturing

During a visit to NASA’s Langley Research Center in Hampton, Virginia, I had the opportunity to see where NASA engineers were working on Electron Beam Freeform Fabrication, or EBF3. This innovation in fabrication is a kind of “additive manufacturing” machine that uses an electron beam gun, a dual wire feed and computer controls to manufacture metallic structures for building parts or tools in hours, rather than days or weeks.

If that sounds familiar, it’s because we’re seeing a lot about 3D printing in the news these days. President Obama specifically mentioned it in his State of the Union address as one innovative technology that will help us advance the future of manufacturing.

Click here to view the entire Blog post from Lori Garver (NASA Deputy Administrator) ›

Continue Reading

NASA Technology Supports American Manufacturing

Administrator Charles Bolden tours the NASA National Center for Advanced Manufacturing at the Marshall Space Flight Center on Feb. 22, 2013. Credit: NASA

NASA Administrator Charles Bolden looks at models of J-2X and RS-25 rocket engines during a Feb. 22, 2013, visit to NASA's National Center for Advanced Manufacturing Rapid Prototyping Facility at the Marshall Space Flight Center in Huntsville, Ala. Credit: NASA/Emmett Given.

NASA Administrator Charles Bolden toured a cutting-edge facility at the agency’s Marshall Space Flight Center, where high-tech manufacturing is creating parts for a next-generation rocket that will launch astronauts to more distant destinations than ever before.

NASA’s National Center for Advanced Manufacturing Rapid Prototyping Facility is just one of the ways the agency is helping to revitalize America’s manufacturing sector. According to a study by the Washington-based Tauri Group, the agency contributed $5 billion to U.S. manufacturing industry in 2012.

Click here to view entire article ›

Continue Reading

Robonaut 2 Team Receives AIAA Robotics Award

Robonaut 2

Robonaut 2 – the first dexterous humanoid robot in space – is pictured in the Destiny laboratory of the International Space Station measuring the air flow in front of vents inside the station to ensure that none of the ventilation ductwork gets clogged or blocked. Credit: NASA

Robonaut 2 – the first dexterous humanoid robot in space – is pictured in the Destiny laboratory of the International Space Station measuring the air flow in front of vents inside the station to ensure that none of the ventilation ductwork gets clogged or blocked. Credit: NASA

The NASA team behind Robonaut 2, the first humanoid robot in space, has been awarded the American Institute of Aeronautics and Astronautics Space Automation and Robotics Award for 2013. AIAA is the world’s largest technical society dedicated to the global aerospace profession.

Robonaut 2, or R2, is a dexterous humanoid robot built and designed at NASA Johnson Space Center in Houston, Texas. Sent to the International Space Station in 2011 with the intention of aiding astronauts on dangerous tasks and freeing them from some the more mundane work, upgrades to the R2 system continue to produce novel advances in the field of robotics.

“The R2 development team is an incredible group of talented people and I am so proud that the team has been recognized with this prestigious honor,” said Dr. Myron Diftler, Robonaut Principal Investigator at NASA Johnson. “To be acknowledged this early in our planned activity on ISS is especially notable. This award from our peers gives us increased confidence that R2 is on a track to even more success as we move towards mobility inside, and then outside the International Space Station.”

The citation for the award reads, “In recognition of the Robonaut 2 Development Team’s pioneering technical achievement and advancement of humanoid dexterous robotics for human space exploration.”

Technologies developed by the R2 team have debuted in spinoff wearable robotic devices. The Robo-Glove, designed to reduce the risk of repetitive stress injuries and provide additional gripping strength to astronauts, is a direct descendant of the actuators and controls found in R2’s hands. Also drawing from the robot’s design team, the X1 exoskeleton device is a robot that a human could wear over his or her body either to assist or inhibit movement in leg joints.

R2 is part of NASA’s Game Changing Development Program, which seeks to quickly mature innovative technologies that will have cross-cutting applications throughout agency missions and may also be of benefit to the American aerospace industry. NASA’s Game Changing efforts are part of the agency’s Space Technology Program, which is innovating, developing, testing and flying hardware for use in future science and exploration missions. NASA’s technology investments provide cutting-edge solutions for our nation’s future.

 

Reference Link:

http://www.nasa.gov/mission_pages/station/main/r2_award.html

Continue Reading

CWRU, NASA and PTC put students to work on aerospace, manufacturing projects

Credits: PTC

Credits: PTC

Case Western Reserve University, NASA Glenn Research Center and software-maker PTC are teaming up to put students to work on real aerospace projects, manufacturing problems and more, with tools used in the industry.

Case Western Reserve is the second university nationwide to become a host of NASA’s Strategic Partners for the Advancement of Collaborative Engineering (SPACE) program. The program is designed to help train the next generation of engineers and scientists.

PTC will provide tools to take on projects from NASA and, in the future, other industries in Northeast Ohio and around the United States. For the SPACE program, PTC is donating PTC Windchill software for Product Lifecycle Management requirements and PTC Creo software for Computer Assisted Design, along with computer hardware servers. The software is used by 27,000 businesses in rapidly evolving, globally distributed manufacturing industries worldwide.

For more information go to:

http://cwru-daily.com/news/cwru-nasa-and-ptc-putting-students-to-work-on-aerospace-projects-manufacturing-problems/

 

Continue Reading

How To Build A Hero

PSC0213_DR_058_0

Humans regularly lose their lives rushing into disaster zones. Now engineers are racing to build robots that can take their place.

By the end of next year, robots will walk into a disaster zone. They won’t roll in on wheels or rumble in on treads. They will walk, striding across rubble, most of them balancing on two legs. Compared with human first responders, the machines will move slowly and halt frequently. But what they lack in speed, they make up for in resilience and disposability. Chemical fires can’t sear a robot’s lungs, and a lifespan cut short by gamma rays is a logistical snag rather than a tragedy.

They’ll have the mobility to do what robots couldn’t at Fukushima, navigating a crisis that unfolds in an environment lousy with doors, stairs, shattered infrastructure, and countless other obstacles. Where previous humanoid bots could barely trundle over the lip of a carpet, these systems will have to climb ladders and slide into vehicles that they themselves drive. And while the ability to turn a doorknob is now cause for celebration even in top-tier robotics labs, these bots will open what doors they can and use power tools to hammer or saw through the ones they can’t.

Because disasters tend to degrade or knock out communication, the surrogates will have a surprising amount of responsibility. Very few, if any, will be tele-operated systems, driven remotely by people using a joystick or wearing sensor gloves. The humanoids will take orders from distant humans, but they’ll use their own algorithms to determine how to properly grip a Sawzall, where to start cutting, and for how long.

The catastrophe the robots will be walking into is, in fact, an obstacle course, built for the two-year-long DARPA Robotics Challenge, which launched last October. At stake is a $2-million prize, awarded to the team whose machine not only scores well in a head-to-head competition this December, but prevails at a second one in 2014. Bots will have to perform eight different tasks, demonstrating both mobility and manipulation skills, that might be required of human first responders.

“What we’ve seen in disaster after disaster, from Hurricane Katrina to Fukushima and now to Superstorm Sandy, is that there are often clear limitations to what humans can accomplish in the early stages of a disaster,” says Gill Pratt, program manager for the challenge. “DARPA believes that robots can substitute for humans where and when situations are too dangerous.”

The competition rules don’t explicitly call for a humanoid design, but the tasks and environment make one a logical choice. From the height of doorknobs to the placement of brake pedals, nearly everything will be positioned and proportioned for creatures that walk upright. The places we care about most in a disaster are where humans live and work­—a robot made in our own image is a natural fit.

Completing just a few of the competition’s tasks would be a remarkable achievement. Nailing all eight of them would be something more. It could mean the birth of the viable humanoid, a machine that’s both competent and robust. Such robots could go where mankind has gone before but shouldn’t again, striding toward the toxic plume or the reactor in meltdown, into the fresh ruins of the built world. These robots could be heroes.

 

Read Full Story

Source*: PopSci

Reference Link:

http://www.popsci.com/technology/article/2013-01/how-build-hero

Continue Reading

NASA Space Tech Program Selects Thermal Control System Concepts

HAMPTON, Va., Jan. 31, 2013  — NASA Space Technology’s Game Changing Development Program has selected eight proposals to develop advanced thermal control system technologies for future spacecraft.

The selected proposals will address a difficult design challenge facing future spacecraft – the development of a thermal control system that can reject high heat loads in a warm thermal environment yet still operate efficiently in a cold environment.

Similar to how heating and cooling systems keep people comfortable on Earth, thermal control systems are an important part of keeping astronauts safe and comfortable in space.

The spacecraft, and everything on board, must remain within a specified temperature range during a variety of mission phases and in a dynamic environment with extreme temperature changes.

Known as, “variable heat rejection thermal control systems,” NASA human spaceflight studies, as well as those from the Space Technology Roadmaps and the National Research Council’s response to these roadmaps, have found that thermal control is a key capability required in order for humans to extend our presence farther into space.

“The technologies selected as part of this activity address today’s most difficult design challenge facing thermal engineers and are applicable to all future crewed and robotic exploration missions,” said Stephen Gaddis , director of NASA’s Game Changing Development Program, located at NASA’s Langley Research Center. “Advancing state of the art thermal control systems will be the rising tide that lifts all future spacecraft designs.”

Proposals for this solicitation were received from NASA field centers, federally funded research and development centers, educational institutions, and industry.  Additionally, many of the proposed activities involved a collaborative effort combining the contributions of individuals from a wide range of performing entities.

Awards for the Phase 1 activity will range up to $50,000 each with a total NASA investment of approximately $400,000.

The proposals that have been selected for contract negotiations are:

  • “Improved Variable Conductance Heat Pipes, iVCHP,” Sergey Semenov , Thermacore Inc., Lancaster, Penn.
  • “A Spacecraft Thermal Management System With Freeze-Tolerant Radiator,” Grant Bue , NASA Johnson Space Center, Houston
  • “Development of Low Temperature Non-Toxic Thermal Control Fluid for Use in a Single Loop Variable Heat Rejection Thermal Control System,” Rubik Sheth , NASA Johnson, Houston,
  • “Thermal Control Using Liquid-Metal Bridge Switches,” Amir Hirsa , Rensselaer Polytechnic Institute, Troy, N.Y.
  • “Temperature Controlled Effective Radiator Area Using Shape Memory Alloys,” Thomas Cognata , MEI Technologies, Inc., Houston
  • “Development of a Heat Switch Radiator,” Gregory Quinn , Hamilton Sundstrand Space Systems International, Inc., Houston
  • “Scalable, Passive, Adjustable Heat Rejection System (SPAHRS), David Bugby , ATK Space Systems, Beltsville, Md.
  • “Development of a Robust Freeze Start-Up Radiator,” Wei-Lin Cho , Hamilton Sundstrand Space Systems International, Inc., Houston

For information about the Game Changing Development and Space Technology Programs visit:
http://www.nasa.gov/oct

Continue Reading

Meet ATHLETE, NASA’s Next Robot Moon Walker

athleteroverbig

To build and supply a lunar base, astronauts will need heavy-duty space trucks for transporting gear. There’s just one problem: no roads. That’s why NASA engineers designed the rover they call ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Explorer)—to handle any terrain, whether dusty, rocky, or crater-y.

The key is the rover’s six bendable spider legs and wheeled feet. On smooth surfaces, it rolls on those wheels; when it runs into an obstacle it can’t clear, it simply steps over it. ATHLETE can also split into a pair of robots that together pick up and haul specially designed shipping containers. (A lander would bring a container to the surface separately.)

So far, engineers at NASA’s Jet Propulsion Laboratory have demonstrated that their $2 million half-size prototype—which consists of two semiautonomous, three-legged robots—can move cargo, walk on inclines, and use tools. The researchers say the actual, 26-foot-tall rover could be ready to start working in space by 2017.

1) The ATHLETE moon rover has 48 stereo cameras, which stream 3-D video from its limbs, frame, and wheels to human operators on Earth or the moon, allowing them to look for hazards and maneuver tools. ATHLETE will have more cameras than any previous rover. (Curiosity has 17.)

2) The rover can refill its hydrogen fuel cells at a solar-powered station that splits water into hydrogen and oxygen (for astronauts to breathe).

3) ATHLETE’s wheeled limbs let it walk, drive, or climb, depending on the environment. Each has seven motorized joints that bend and twist. ATHLETE controls each leg separately so that it can keep cargo level even while climbing uneven terrain.

4) Drills, scoops, and grippers collect rock and soil samples for analysis. One set of motors operates both the wheels and tools, which saves weight and makes the rover cheaper to launch into space.

5) Clamps on the wheels hold interchangeable tools.

6) A tool belt stores gear when not in use.

7) Airless tires can’t burst or go flat.

HOW IT HAULS

8) Drive: People in mission control (on Earth or on the moon) tell the ATHLETE rover to drive to a lander that has just touched down, carrying a cargo pallet. Incoming supplies must land far from the astronauts’ base to prevent jagged moondust from damaging equipment.

9) SplitATHLETE divides into two identical, three-legged rovers, called Tri-ATHLETEs, by lifting motorized hooks that latch across its center.

10) Stretch: The rovers straighten their legs until they’re 27 feet tall—high enough to reach above the lander to the cargo pallet—and use their motorized hooks to grab pins on either side of the cargo.

11) Walk: If the rovers travel over rocky terrain too uneven for driving, they can walk while keeping the cargo level.

12) Deliver: The rovers crouch down until the pallet is on the ground and then release it.

 

Read Full Story

Source*: PopSci

Reference Link:

http://www.popsci.com/technology/article/2013-01/meet-athlete-nasas-robot-moon-walker

Continue Reading

NASA – ‘Smart SPHERES’ Fly High Aboard the International Space Station

Steve Ormsby monitors the SPHERES experiment.  Credit: NASA/ARC

Steve Ormsby monitors the SPHERES experiment. Credit: NASA/ARC

On Dec. 12 engineers at NASA’s Ames Research Center, Moffett Field, Calif., and Johnson Space Center in Houston conducted an experiment using small, free-flying robotic satellites called “Smart SPHERES” aboard the International Space Station.

The Smart SPHERES, located in the Kibo laboratory module, were remotely operated from the International Space Station’s Mission Control Center at Johnson to demonstrate how a free-flying robot can perform surveys for environmental monitoring, inspection and other routine housekeeping tasks.

In the future, small robots could regularly perform routine maintenance tasks allowing astronauts to spend more time working on science experiments. In the long run, free-flying robots like Smart SPHERES also could be used to inspect the exterior of the space station or future deep-space vehicles.


Read Full Story

*Source: NASA.gov

Continue Reading

NASA – ‘Smart SPHERES’ Fly High Aboard the International Space Station

Spheres

Chris Provencher and astronaut Kevin Ford set up and supervise the red Smart SPHERES’ activity. Credit: NASA/ARC

On Dec. 12 engineers at NASA’s Ames Research Center, Moffett Field, Calif., and Johnson Space Center in Houston conducted an experiment using small, free-flying robotic satellites called “Smart SPHERES” aboard the International Space Station.

The Smart SPHERES, located in the Kibo laboratory module, were remotely operated from the International Space Station’s Mission Control Center at Johnson to demonstrate how a free-flying robot can perform surveys for environmental monitoring, inspection and other routine housekeeping tasks.

In the future, small robots could regularly perform routine maintenance tasks allowing astronauts to spend more time working on science experiments. In the long run, free-flying robots like Smart SPHERES also could be used to inspect the exterior of the space station or future deep-space vehicles.

Read Full Story

*Source: NASA.gov

Continue Reading

Researchers Test Novel Power System for Space Travel – Joint NASA and DOE team demonstrates simple, robust fission reactor prototype

CLEVELAND – A team of researchers from NASA’s Glenn Research Center in Cleveland and Los Alamos National Laboratory in Los Alamos, N.M. have demonstrated a new concept for a reliable nuclear reactor that could be used on space flights.

On September 13, the research team demonstrated the first use of a heat pipe to cool a small nuclear reactor and the first use of a Stirling engine to convert the reactor heat into electricity. The test was conducted at the Nevada National Security Site’s Device Assembly Facility near Las Vegas. The Demonstration Using Flattop Fissions (DUFF) experiment produced 24 watts of electricity.

John Bounds

John Bounds of Los Alamos National Laboratory’s Advanced Nuclear Technology Division makes final adjustments on the DUFF experiment, a demonstration of a simple, robust fission reactor prototype that could be used as a power system for space travel. DUFF is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965. Credits: Los Alamos National Laboratory

A heat pipe is a sealed tube with an internal fluid that can efficiently transfer heat produced by a reactor with no moving parts. Heat pipe technology was invented at Los Alamos in 1963 and is used widely by NASA for aerospace applications. A Stirling engine is a relatively simple closed-loop engine that converts heat energy into electrical power using a pressurized gas to move a piston within a magnetic field. Using the two devices in tandem allowed for creation of a simple, reliable electric power supply that could be adopted for space applications.

Researchers configured DUFF on an existing experiment, known as Flattop, to allow for the water-filled heat pipe to extract heat from uranium. Heat from the fission reaction was transferred to a pair of free-piston Stirling engines manufactured by Sunpower Inc., in Athens Ohio. Engineers from Glenn designed and built the heat pipe and Stirling assembly, and operated the engines during the experiment. Los Alamos nuclear engineers operated the Flattop assembly under authorization from the National Nuclear Security Administration.

DUFF is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965. It confirms the basic nuclear reactor physics and heat transfer for a simple, reliable space power system.

“The heat pipe and Stirling engine used in this test are meant to represent one module that could be used in a space system,” said Marc Gibson, Glenn’s lead engineer for the test. “A flight system might use several modules to produce approximately one kilowatt of electricity.”

“The nuclear characteristics and thermal power level of the experiment are remarkably similar to our space reactor flight concept,” said Los Alamos engineer David Poston. “The biggest difference between DUFF and a possible flight system is that the Stirling input temperature would need to be hotter to attain the required efficiency and power output needed for space missions.”

A power system based on the concept demonstrated by DUFF could be attractive for future space exploration missions that may require significantly higher power levels than current systems can easily provide.

“Perhaps one of the more important aspects of this experiment is that it was taken from concept to completion in six months,” said Los Alamos engineer David Dixon. “We wanted to show that with a tightly-knit and focused team, it is possible to successfully perform practical reactor testing.”

Glenn’s contributions were made possible through resources provided by the NASA Radioisotope Power Systems Program Office within the Science Mission Directorate and the Nuclear Systems project under the NASA Office of Chief Technologist, Game Changing Development Program.

The Los Alamos participation in this experiment was made possible through Los Alamos’s Laboratory-Directed Research and Development Program and program office support.

For a print quality image of a test operator inserting the heat pipe into the reactor, visit:

http://www.nasa.gov/centers/glenn/news/pressrel/2012/12-fission_addm.html

For more information about Glenn, visit:

For more information about Los Alamos National Laboratory, visit:


NASA Glenn Research Center news releases are available automatically by sending an Internet electronic mail message to: grc-subscribe@newsletters.nasa.gov
Leave the subject and body blank. The system will reply with a confirmation via e-mail of each subscription. You must reply to that message to begin your subscription.
To unsubscribe, address an e-mail message to:grc-unsubscribe@newsletters.nasa.gov
Leave the subject and body blank.

Continue Reading

NASA Telerobotics Team to Demonstrate K10 Rover Sept. 22

K10 Robot

The K10 robot now undergoing testing at NASA’s Ames Research Center in Moffatt Field, Calif. Credits: (NASA/ARC)

Skywatchers and space enthusiasts across the globe will gather Sept. 22 to celebrate “International Observe the Moon Night” – but one group in Moffett Field, Calif., will get an added thrill: the chance to watch a next-generation NASA robot being put through its paces.

NASA’s Surface Telerobotics team, part of the Human Exploration Telerobotics (HET) project, will help make a night under the lunar limb memorable by demonstrating how its K10 rover deploys a telescope antenna – one of a variety of tasks such sophisticated, articulate “handybots” will conduct in the future to support their human counterparts living and working in space and, someday, on other worlds.


Read Full Story

*Source: NASA.gov

Continue Reading

NASA – Mission Success for MSL Entry, Descent, & Landing Instrument (MEDLI)

MEDLI

Mission success for the MSL Entry, Descent, & Landing Instrument (MEDLI) Suite. When the Curiosity rover touched down on the red planet Aug. 6 at 12:32 p.m. CDT, NASA MEDLI researchers were already cheering. The instrumentation payload, carried in the entry vehicle’s heatshield, included an intricate array of sophisticated engineering sensors designed to measure heat, pressure and other conditions impacting the heatshield during atmospheric entry and descent. The shield is jettisoned prior to landing.

The MEDLI suite powered up successfully Aug. 5 during the Mars Science Laboratory’s approach to the red planet. About an hour before entry, descent and landing, the sensor suite’s temperature stabilized at minus-20 degrees Fahrenheit, readying MEDLI for its journey through Mars’ atmosphere. Real-time streaming data from the shield sensors was acquired through much of the vehicle’s entry and descent – barring the brief UHF-frequency communications blackout upon entry – until Curiosity deployed its parachutes and jettisoned its heatshield. The rover touched down smoothly in Gale Crater to begin its two-year primary mission.

 

Read Full Story

 

*Source: NASA.gov

Continue Reading

NASA Channels “The Force” With Smart SPHERES

Three satellites fly in formation as part of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) investigation. Image Credit: NASA

Three satellites fly in formation as part of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) investigation. Image Credit: NASA

In an interesting case of science fiction becoming a reality, NASA has been testing their SPHERES project over the past few years. The SPHERES project (Synchronized Position Hold, Engage, Reorient, Experimental Satellites) involves spherical satellites about the size of a bowling ball. Used inside the International Space Station, the satellites are used to test autonomous rendezvous and docking maneuvers. Each individual satellite features its own power, propulsion, computers and navigational support systems.

Read Full Story

*Source: UniverseToday.com

Continue Reading

NICER/SEXTANT

SEXTANT/NICER production parts Credits: NASA

SEXTANT/NICER production parts Credits: NASA

Untitled-2 Untitled-21DSC_0486DSC_0484On April 15, 2010, the President challenged NASA to “break through the barriers” to enable the “first-ever crewed missions beyond the Moon into deep space” by 2025. One of these barriers is navigation technology.In the 18th century, the advancement of clock technology and resulting improvement in navigation fidelity brought us to the New World that we now call home. In support of NASA’s push to explore new worlds beyond low Earth orbit (LEO), and to serve a variety of national needs, the NICER (Neutron star Interior Composition ExploreR) team proposes to use the International Space Station (ISS) to validate a revolutionary navigation technology.

The NICER/SEXTANT (NICER is the name given to the instrument for the SMD proposal, but NICER and SEXTANT are the same instrument) concept uses a collection of pulsars— stellar “lighthouses”—as a time and navigation standard just like the atomic clocks of the Global Positioning System (GPS). Unlike GPS satellites, NICER pulsars are distributed across the Galaxy, providing an infrastructure of precise timing beacons that can support navigation throughout the Solar System. Since their discovery in 1967, pulsars have been envisioned as a tool for Galactic navigation (Figure 1). An NICER system measures the arrival times of pulses through the detection of X-ray photons; a sequence of measurements is then stitched together into an autonomous on-board navigation solution.

NASA’s plans for distant exploration demand breakthrough navigation tools. The best current capabilities are resource-intensive and degrade as explorers recede from Earth. At Mars, they yield crossrange spacecraft positions to a few kilometers, but impose scheduling burdens on the Deep Space Network (DSN). For critical applications such as orbit insertion at Jupiter and beyond, the current state-of-the-art is pushed to its practical limit. NICER complements the existing navigation toolbox, promising three-dimensional position accuracies better than 500 m anywhere in the Solar System.  Ultimately, a small (~0.1 m3), low mass (<~10 kg) NICER package will offer a cost effective on-board navigation option for the redundancy and reliability required for human exploration beyond LEO, and will enable deep-space missions that are not feasible with Earth-based tracking.

X-ray pulsar timing applications address the navigation and exploration goals of the National Space Policy of June 28, 2010, and NASA, DoD, and NIST are investing in technology development to exploit them. As celestial clocks, pulsars offer a new time standard that can be independently generated anywhere. The DoD is exploring applications enabled by a network of spacecraft with synchronized clocks, including mitigation of vulnerabilities in GPS. DARPA has funded the X-ray Timing (XTIM) program, which, in collaboration with the ISS NICER experiment, will demonstrate distributed time-synchronization using celestial sources.

 

sextant-copy

Figure 1: NICER/SEXTANT brings to practical reality the concept of a pulsar based map, first used on the Pioneer Plaque to encode (radial lines at left) the Sun’s location in the Galaxy [3].

NICER (Neutron Star Interior Composition Explorer) is a SMD science mission chosen to go into Phase A. NICER represents a science aspect of SEXTANT, where looking at many of the same Neutron Stars we need to enable pulsar navigation, scientists can also learn about the densest objects in the universe and study extreme physics.

The combination of the science and technology demonstration represented by SEXTANT reflects a true cost sharing between very different parts of NASA and the US Government.

The selection notice is at:
http://www.nasa.gov/home/hqnews/2011/sep/HQ_11-328_Science_Proposals.html

Continue Reading