Archive | Composite Cryogenic Propellant Tank RSS

NASA-Boeing Team Wins Big at Advanced Materials Expo

Advanced Materials Expo

NASA Project Manager John Vickers and Boeing Program Manager Dan Rivera accept the Combined Strength Award for Composites Excellence for the Composite Cryogenic Technology Demonstration at the Composites and Advanced Materials Expo in Orlando, Fla.
Image Credit: NASA

On Tuesday, October 14, NASA and Boeing received the Combined Strength Award for composites excellence (ACE) for their work in composite cryotanks during the Composites and Advanced Materials Expo (CAMX) in Orlando, Fla. CAMX is the largest composites industry trade show and conference held in North America.

The award was given to the Composite Cryogenic Technology Demonstration (CCTD) project for utilizing innovative manufacturing and design techniques to build the largest composite liquid hydrogen fuel tank built out of autoclave. The project, funded by the NASA Space Technology Mission Directorate’s Game Changing Development Program, has led to a potential 30 percent weight savings and a 25 percent cost savings, allowing insertion of higher mass payloads to low Earth orbit and beyond.

Read Full Article

*Source: NASA.gov

Continue Reading

NASA Completes Successful Battery of Tests on Composite Cryotank

NASA has completed a complex series of tests on one of the largest composite cryogenic fuel tanks ever manufactured, bringing the aerospace industry much closer to designing, building, and flying lightweight, composite tanks on rockets.

“This is one of NASA’s major technology accomplishments for 2014,” said Michael Gazarik, NASA’s associate administrator for Space Technology. “This is the type of technology that can improve competitiveness for the entire U.S. launch industry, not to mention other industries that want to replace heavy metal components with lightweight composites. These tests, and others we have conducted this year on landing technologies for Mars vehicles, show how technology development is the key to driving exploration.”

The demanding series of tests on the 18-foot (5.5-meter) diameter tank were conducted inside a test stand at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Engineers added structural loads to the tank to replicate the physical stresses launch vehicles experience during flight.

 
Read Full Article
*Source: NASA.gov

Continue Reading

NASA Engineers Prepare Game Changing Cryotank for Testing

0fd0193

NASA and Boeing engineers are inspecting and preparing one of the largest composite rocket propellant tanks ever manufactured for testing. The composite cryotank is part of NASA’s Game Changing Development Program and Space Technology Mission Directorate, which is innovating, developing, testing and flying hardware for use in NASA’s future missions. NASA focused on this technology because composite tanks promise a 30 percent weight reduction and a 25 percent cost savings over the best metal tanks used today. The outer shell of the 18-foot-diameter (5.5-meter) cryotank is the same size as propellant tanks used on today’s full-size rockets.

 
Read Full Article
*Source: NASA.gov

Continue Reading

NASA Marshall Kicks Off Game Changing Composite Cryotank Testing

NASA’s Marshall Space Flight Center in Huntsville, Ala., is set to begin a series of structural and pressure tests on one of the largest composite cryogenic fuel tanks ever manufactured. Advanced composite cryotanks will help enable NASA’s future deep space exploration missions.

Media are invited to view the unloading of the 18-foot-diameter (5.5-meter) composite cryotank from NASA’s Super Guppy aircraft on March 27 at 7 a.m. CDT at Redstone Army Airfield. In addition, journalists are invited to interview John Vickers, NASA project manager, Composite Cryotank Technology Demonstration (CCTD), and Dan Rivera, Boeing program manager for CCTD.

For more than 50 years, metal tanks have carried fuel to launch rockets and propelled them into space. NASA is pursuing composite cryogenic fuel tanks, a potentially game-changing technology, because the tanks could yield significant cost and weight reductions on future launch vehicles. Once installed in Marshall’s test facility, the composite cryotank will undergo a series of tests at extreme pressures and temperatures, similar to those experienced during spaceflight.

 
Read Full Article
*Source: NASA.gov

Continue Reading

NASA’s Super Guppy Makes a Special Delivery

NASA’s Super Guppy, a wide-bodied cargo aircraft, landed at the Redstone Army Airfield near Huntsville, Ala. on March 26 with a special delivery: an innovative composite rocket fuel tank. The tank was manufactured at the Boeing Developmental Center in Tukwila, Wash. The tank will be unloaded from the Super Guppy, which has a hinged nose that opens and allows large cargos like the tank to be easily unloaded. After the tank is removed from the Super Guppy, it will be inspected and prepared for testing at NASA’s Marshall Space Flight Center in Huntsville, Ala. The composite tank project is part of the Game Changing Development Program and NASA's Space Technology Mission Directorate. Image credit: NASA/MSFC/Emmett Given

NASA’s Super Guppy, a wide-bodied cargo aircraft, landed at the Redstone Army Airfield near Huntsville, Ala. on March 26 with a special delivery: an innovative composite rocket fuel tank. The tank was manufactured at the Boeing Developmental Center in Tukwila, Wash. The tank will be unloaded from the Super Guppy, which has a hinged nose that opens and allows large cargos like the tank to be easily unloaded. After the tank is removed from the Super Guppy, it will be inspected and prepared for testing at NASA’s Marshall Space Flight Center in Huntsville, Ala. The composite tank project is part of the Game Changing Development Program and NASA’s Space Technology Mission Directorate.
Image credit: NASA/MSFC/Emmett Given

› Alternate view #1
› Alternate view #2
› Flickr: Super Guppy and Cryotank

 
Read Full Article
*Source: NASA.gov

Continue Reading

Composite tanks promise major savings

ROCKET ENGINEERS HAVE LONG BEEN enthralled by the idea of storing liquid hydrogen in cryogenic tanks made from graphite composite. These would weigh an estimated 40% less than the cryogenic tanks used today, which are made of aluminum or higher strength aluminum lithium alloy. Automated manufacturing also could make the composite tanks 20% less expensive than metal versions.

Continue Reading

Tooling up for larger launch vehicles

NASA and Janicki Industries demonstrate composites’ cost advantage in tooling for fabrication of 10m/33 ft diameter payload fairing for next-generation launch vehicle.

The Space Launch System (SLS) will be the next heavy-lift launch vehicle for the National Aeronautics and Space Admin. (NASA, Washington D.C.). Composites have been chosen for both the launch vehicle structures and tooling because they offer performance and cost advantages over metals.

Continue Reading

NASA Sees Potential In Composite Cryotank

[dropcap1]S[/dropcap1]uccessful tests of an all-composite cryogenic fuel tank for space launch vehicles hold promise for lower-cost access to space, perhaps before the decade is out.

A small composite fuel tank fabricated by Boeing with funding from the “game-changing” program of NASA’s Space Technology Mission Directorate contained 2,091 gal. of liquid hydrogen through a series of shifts in its internal pressure and three temperature cycles ranging from ambient down to minus 423F.

The June 25 test at Marshall Space Flight Center with a 2.4-meter-dia. composite fuel tank paves the way for more tests next spring. That test will subject a 5.5-meter tank to flight-like mechanical loads as well as temperature and pressure cycles.

So far it appears the project is achieving its goal of reducing the cost of building tanks by at least 25% from that of conventional aluminum-lithium tanks, while cutting the weight of tanks made from the lightweight aluminum alloy by at least 30%.

“This is a very difficult problem,” says Mike Gazarik, associate administrator for space technology. “Composites and cryos don’t work well together, and these guys have done incredible work in figuring out how to design and how to fabricate these tanks.”

Continue Reading

Lightening the Load: Composite Cryotank Technologies

http://www.nasa.gov/offices/oct/home/comp_cryotank.html

636452main_cryotank_226NASA is on a high-technology, weight-loss diet.

But this watch-your-weight campaign centers on lightening the dry mass of launch vehicles, such as future, evolved versions of NASA’s Space Launch System—an advanced heavy-lift launch vehicle that will provide an entirely new national capability for human exploration beyond low Earth orbit.

As part of the Game Changing Technology Division within the Office of the Chief Technologist, work is underway on the Composite Cryotank Technologies Demonstration effort. The term “cryotank” refers to storage of super-cold fuels, such as liquid oxygen and liquid hydrogen.

Here’s the weighty dilemma:

Roughly 60 percent of the dry mass of a launch vehicle accounts for the fuel and oxidizer tanks. By using composite materials, a cryotank structure can be produced that weighs 30 percent less than aluminum—the current state-of-the-art.

NASA and its industry partners continuously strive to reduce the weight and cost of launch vehicles. The more weight shaved off a vehicle, the more payload can be carried to space, perhaps even allowing for one less engine or strap-on booster.

The Cure: Out-of-Autoclave

“Our project was one of the original projects within the Office of Chief Technologist,” explains John Vickers, NASA project manager for the Composite Cryotank Technologies Demonstration effort at Marshall Space Flight Center in Huntsville, Ala.

The project centers on fabricating tanks that incorporate design features and new manufacturing processes applicable to designs up to 10 meters in diameter. These tanks could be used on future launch vehicles, in space propellant depots and Earth departure exploration vehicles.

A key to this innovative technological push, Vickers points out, is “out-of-autoclave”—a relatively new technology for composites. Out-of-autoclave curing composite manufacturing is an alternative to the traditional high pressure autoclave curing process commonly used by the aerospace industry.

While it has widespread applications in producing aircraft with the material cured in large autoclaves, using composites for aerospace is a relatively new technology. “The downside of that is that autoclaves are very expensive,” Vickers notes, and they are energy-hungry machines.

“So a benefit for not having to use the autoclave is that many other companies can join into the aerospace industry that, prior to this, could not,” Vickers adds. “Aerospace and lightweight materials…well, they go hand-in-hand.”

Pursuing both technologies in parallel—the composite tank and the cost-saving use of out-of-autoclave technology—exponentially contributes to the achievement of the project,” Vickers says. “It really gives the program two distinct technology advancements that are coming together.”

Test Articles

The project goal is to produce a major advancement in a demonstrated technology readiness; successfully test a 5.5 meter-diameter composite hydrogen fuel tank; achieve a 30 percent weight savings; and 25 percent cost savings, compared to today’s state-of- the-art.

The cryotank work can benefit multiple stakeholders, Vickers observes, be it NASA, industry, and other government agencies.

Vickers says that there are two milestone-making test article structures within his program, a 2.4 meter and the 5.5 meter diameter composite tank. “By the way, that 5.5 meter tank will be the largest composite liquid hydrogen tank that’s been designed, manufactured and tested,” he says.

Last September, NASA picked The Boeing Company of Huntington Beach, Calif., for the Composite Cryotank Technologies Demonstration effort. Under that contract, Boeing will design, manufacture and test the lightweight composite cryogenic propellant tanks.

“The work is going very well,” Vickers explains. “We have a NASA team that’s focused on design and they are working very closely with Boeing.”

“As a NASA engineer, it’s the most fun because it’s the most challenging. We are encountering technical design issues that we’re overcoming. And that’s what engineering is really all about,” Vickers says. “Who is against lighter weight and lower cost? So we’re sitting in a pretty good spot.”

Continue Reading

NASA Picks Boeing For Composite Cryogenic Propellant Tank Tests

Space Technology NASA Banner
[Source: www.nasa.gov – Release 11:305]

WASHINGTON — NASA has selected The Boeing Company of Huntington Beach, Calif., for the Composite Cryotank Technologies Demonstration effort. Under the contract, Boeing will design, manufacture and test two lightweight composite cryogenic propellant tanks.

The demonstration effort will use advanced composite materials to develop new technologies that could be applied to multiple future NASA missions, including human space exploration beyond low Earth orbit.

Boeing will receive approximately $24 million over the project lifecycle from NASA’s Space Technology Program for the work which starts this month. The tanks will be manufactured at a Boeing facility in Seattle. Testing will start in late 2013 at NASA’s Marshall Space Flight Center in Huntsville, Ala.

“The goal of this particular technology demonstration effort is to achieve a 30 percent weight savings and a 25 percent cost savings from traditional metallic tanks,” said the Director of NASA’s Space Technology Program, Michael Gazarik at NASA Headquarters in Washington. “Weight savings alone would allow us to increase our upmass capability, which is important when considering payload size and cost. This state-of-the-art technology has applications for multiple stakeholders in the rocket propulsion community.”

Continue Reading